
J. Fluid Mech. (1999), vol. 380, pp. 169–203. Printed in the United Kingdom

c© 1999 Cambridge University Press

169

Effect of free-stream turbulence and other
vortical disturbances on a laminar boundary

layer

By S. J. L E I B1†, D A V I D W. W U N D R O W1†
AND M. E. G O L D S T E I N2

1NYMA Inc., Lewis Research Center Group, Cleveland, OH 44135, USA
2National Aeronautics and Space Administration, Lewis Research Center, Cleveland,

OH 44135, USA

(Received 23 December 1997 and in revised form 2 September 1998)

This paper is concerned with the effect of free-stream turbulence on the pre-
transitional flat-plate boundary layer. It is assumed that either the turbulent Reynolds
number or the downstream distance (or both) is small enough that the flow can be lin-
earized. The dominant disturbances in the boundary layer, which are of the Klebanoff
type, are governed by the linearized unsteady boundary-region equations, i.e. the lin-
earized Navier–Stokes equations with the streamwise derivatives neglected in the
viscous and pressure-gradient terms. The turbulence is represented as a superposition
of vortical free-stream Fourier modes and the corresponding Fourier component solu-
tions to the boundary-region equations are obtained numerically. The results are then
superposed to compute the root mean square of the fluctuating streamwise velocity
in the boundary layer produced by the actual free-stream turbulence. It is found that
the disturbances computed with isotropic free-stream turbulence do not reach the
levels measured in experiments. However, good quantitative agreement is obtained
with the relatively low turbulent Reynolds number data of Kendall when the mea-
sured strong anisotropy of the low-frequency portion of his spectrum is accounted
for. Data at higher turbulent Reynolds numbers are affected by nonlinearity, which
manifests itself through the generation of small spanwise length scales. We attempt
to model this within the context of the linear theory by choosing a free-stream spec-
trum whose energy is concentrated at larger transverse wavenumbers and achieve
very good agreement with the data. The results suggest that even small deviations
from pure isotropy can be an important factor in explaining the large amplitudes
of the Klebanoff modes in the pre-transitional boundary layer, and also point to
the importance of nonlinear effects. We discuss some additional effects that may
need to be accounted for in order to obtain a complete description of the Klebanoff
modes.

1. Introduction
This paper is concerned with the effects of vortical free-stream disturbances on

transition to turbulence in flat-plate boundary layers. Weak free-stream turbulence in
an otherwise uniform stream is probably the most important example of this type of

† Present affiliation: Dynacs Engineering Co. Inc., NASA Lewis Research Center, Cleveland,
OH 44135, USA.
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disturbance, and Dryden (1936) and Taylor (1939) were the first to study its effects
on the flat-plate boundary layer. They showed that the resulting streamwise velocity
fluctuations in the boundary layer were of very low frequency and reached amplitudes
that were several times larger than those in the free stream.

Most of the early experiments were conducted at very low free-stream turbulence
levels in order to confirm the existence of Tollmien–Schlichting waves, and the
Dryden–Taylor observations did not receive much attention until Klebanoff carried
out his 1971 experiments which is unfortunate since the free-stream turbulence level is
usually quite high in both technological and naturally occurring flows. In addition to
reproducing the earlier findings of Dryden (1936) and Taylor (1939), Klebanoff (1971)
demonstrated that the disturbances grow more or less linearly with the boundary-
layer thickness and that they are quite narrow in the spanwise direction. Klebanoff
(1971) referred to these disturbances as ‘breathing modes’, because, as noted earlier
by Taylor (1939), they appeared to correspond to a thickening and thinning of the
boundary layer. Kendall (1991) renamed them Klebanoff modes, and that name seems
to have taken hold even though they are not modes in the strict mathematical sense
(i.e. they are not homogeneous solutions of an appropriate differential equation).

More recent experimental studies of this phenomenon were carried out by Arnal &
Juillen (1978), Leventhal & Reshotko (1981), Kosorygin et al. (1982), Kendall (1985,
1991), Suder, O’Brien & Reshotko (1988), Blair (1992), Roach & Brierley (1992),
Westin et al. (1994) and Watmuff (1997). Kendall (1998) reviews some of these more
recent experiments. The most recent of these acknowledge the importance of carefully
documenting the free-stream disturbance environment, but, as will be shown below,
much remains to be done in this regard. Westin et al. (1994) collected results from a
number of these experiments and showed that the root mean square (r.m.s.) of the
streamwise velocity fluctuations usually grows in direct proportion to the square root
of the distance from the leading edge of the plate, as observed by Klebanoff, but
with proportionality constants that differ from experiment to experiment even when
the amplitudes are normalized by the free-stream turbulence level. However, at least
some of the data exhibit somewhat different growth rates and, in some cases, there is
even a sudden increase in amplitude presumably signalling the onset of transition.

There have been a number of theoretical and numerical studies of the effect
of small free-stream disturbances on flat-plate boundary layers, but only a few
of these relate to the generation of Klebanoff modes. Crow (1966) carried out a
linear analysis of the boundary-layer flow due to a small spanwise distortion of
an otherwise uniform free stream. Goldstein, Leib & Cowley (1992) and Goldstein
& Leib (1993) considered the nonlinear boundary-layer flow due, respectively, to
steady normal and streamwise vorticity distortions to an otherwise uniform upstream
flow in the limit of infinite disturbance Reynolds number. Goldstein & Wundrow
(1998) reconsidered the former problem, and Wundrow & Goldstein (1998) the latter
for the case where the disturbance Reynolds number is of order unity, and the
nonlinear flow is governed by the boundary-region equations (Kemp 1951). Scaling
of the governing equations shows that nonlinear effects become important when the
scaled streamwise distance from the leading edge, εx∗/L∗, is order-one, where x∗ is
the dimensional streamwise coordinate, ε is a measure of the free-stream turbulence
level, and L∗ is its characteristic length scale. Numerical solutions of the nonlinear
steady boundary-layer equations (Goldstein & Leib 1993) and the nonlinear steady
boundary-region equations (Wundrow & Goldstein 1998) for a single free-stream
Fourier mode show that nonlinear effects within the boundary layer produce a strong
focusing along planes of maximum boundary-layer thickness, but do not significantly
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affect the spanwise-averaged r.m.s. streamwise velocity fluctuations (Leib, Wundrow
& Goldstein 1999) (but see § 7).

Bertolotti (1997) used the linearized parabolized stability equations to numerically
compute the disturbance velocity due to steady and low-frequency free-stream modes
and compared the results with the experimental data of Westin et al. (1994) and
some recent unpublished data of Kendall. In Bertolotti’s computations, however, the
free-stream turbulence was represented by a single Fourier mode, whose amplitude
was chosen to fit the experimental data.

The actual free-stream turbulence is, of course, broadband and therefore best
represented as a superposition of Fourier modes. This superposition can only be
used to advantage within the context of linear theory which provides considerable
motivation for extending the range of applicability of the linear analysis as far as
possible, especially since the only alternative appears to be the use of a full numerical
simulation.

In the experiments of Westin et al. (1994), fluctuating streamwise velocity mea-
surements were taken at distances from the leading edge ranging from 100 mm to
1 m. Since our analysis shows that the Klebanoff modes are primarily generated
by the transverse free-stream velocity fluctuations, the transverse integral scale and
the intensity of the transverse velocity fluctuations are the appropriate length and
amplitude scales to use when estimating the importance of nonlinear effects. Using
the transverse integral scale, estimated to be about 8 mm (see p. 203 of their paper),
for L∗ and their higher turbulence level of 1.5% shows that the εx∗/L∗ values of the
measurement points in their experiment ranged between 0.2 and 2.0 (the broadband
streamwise and transverse free-stream intensities were nearly equal in this experi-
ment). These estimates are in sharp disagreement with those made by Bertolotti
(1997), who implied that nonlinear effects occur much further downstream in the
Westin et al. (1994) experiment. (Bertolotti seems to have based his estimates on the
flow conditions in Kendall’s experiments. See p. 2286 of his paper.) Our estimates
suggest that, while linear theory should be able to describe the initial stages of the
Klebanoff mode evolution in the Westin et al. (1994) experiment, nonlinear effects
are likely to become important beyond the first few measurement stations.

Gulyaev et al. (1989) used solutions of the linearized, unsteady boundary-layer
equations to describe the evolution of Klebanoff modes. They showed that the
boundary-layer fluctuations are driven by two independent components of the free-
stream motion: a two-dimensional component, which is relatively benign, and a three-
dimensional one that exhibits significant streamwise growth and therefore provides
the dominant contribution to the r.m.s. streamwise velocity fluctuations. However,
as even Gulyaev et al. (1989) point out, the Klebanoff modes cannot actually be
described by the Prandtl boundary-layer equations because most of the experimental
measurements lie in a region where the spanwise length scales of these modes are of
the same order as the local boundary-layer thickness.

In this paper, we carry out a systematic asymptotic analysis of the effect of free-
stream turbulence and other vortical disturbances on a laminar flat-plate boundary
layer. We assume that the turbulent Reynolds number is small enough so that the
problem can be linearized. Our results show that the analysis of Gulyaev et al. (1989)
applies only at very small distances from the leading edge and that most of the
experimental measurements lie in a region where the Klebanoff modes are governed
by the unsteady boundary-region equations, i.e. the Navier–Stokes equations with the
streamwise derivatives neglected in the viscous and pressure-gradient terms (Kemp
1951). These equations are elliptic, rather than hyperbolic, in the crossflow plane –
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which has a significant effect on the behaviour of the solutions. Unlike the Bertolotti
(1997) analysis, the upstream and far-field boundary conditions for the boundary-
region equations result from strict asymptotic matching with a realistic free-stream
turbulent flow.

The study of Klebanoff modes is not only important in its own right, but also
because of the ubiquitous nature of the underlying phenomena. For example, the
transition process in the very low-turbulence-level experiments is known to result from
the orderly amplification of nearly discrete-frequency, two-dimensional, Tollmien–
Schlichting waves. These primary instabilities can eventually become large enough to
support oblique secondary instabilities, which then interact nonlinearly to generate
strong spanwise-variable mean flow distortions (see, for example, Goldstein & Choi
1989; Goldstein 1995) that are structurally similar to the Klebanoff modes. This is
an example of how different initial states can ultimately lead to a similar final state –
which is consistent with the interpretation of the turbulent flow as an attractor.

The wall-layer streaks that occur in turbulent boundary layers are another example
of this phenomenon (Kline et al. 1967). Like the Klebanoff modes, these streaks
are spanwise-variable regions of high and low streamwise velocity associated with
counter-rotating streamwise vortices. It is likely that they are driven by the turbulence
in the outer part of the boundary layer in much the same way that Klebanoff
modes are driven by free-stream turbulence. Finally, Cantwell, Coles & Dimotakis
(1978) observed elongated streamwise disturbances in the wall region below growing
turbulent spots. They conjectured that these were Taylor–Görter vortices generated
by the passage of the spot. An alternative explanation might be that they are driven
by the turbulence within the spot in the same way as the Klebanoff modes are driven
by free-stream turbulence.

The problem is formulated, and the appropriate scaling is developed, in § 2. In
§ 3 we consider the inviscid flow above the boundary layer. The linearized unsteady
boundary-layer solution is discussed in § 4, and the linearized unsteady boundary-
region solution in § 5. In § 6 we derive an expression for the streamwise velocity
correlation function in the boundary layer by combining the individual Fourier-
component solutions to the boundary-region equations with the upstream turbulence
spectrum. The relevant computations are presented in § 7, and the results are compared
with data from some of the more recent experiments. The implications of the results
of the analysis and computations are discussed in § 8.

2. Formulation and scaling
We consider the flow over an infinitely-thin flat plate due to a stationary, homog-

eneous, grid-generated turbulence field. The relatively weak turbulence field that is
imposed in most of the experiments can probably be well represented (at least on a
local basis) by a purely convected perturbation, say

u− ı̂ = εu∞(x− t, y, z), (2.1)

of a nominally uniform mean flow, U∞ (see § 3 and 5 below). Here x = xı̂+ ŷ+ zk̂ =
{x1, x2, x3} denotes the Cartesian coordinates normalized, along with all other lengths,
by the transverse integral scale of the turbulence, Λ, with x in the direction of the
uniform mean flow, y normal to the plate, and z along the span. The time, t, is made
dimensionless with Λ/U∞, while the velocities and pressure are normalized with U∞
and ρU2∞, respectively, where ρ is the (constant) density. The small parameter ε is a
measure of the turbulence intensity, and the scaled turbulence velocity u∞ must satisfy
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Figure 1. Flow configuration.

the solenoidal condition

∇ · u∞ = 0, (2.2)

but can otherwise be specified arbitrarily as an upstream boundary condition.
Since the upstream turbulence is assumed to be stationary and homogeneous, it

can be treated as a superposition of harmonic disturbances of the form

u∞ = û∞ei(k·x−k1t), (2.3)

with

û∞ · k = 0, (2.4)

where û∞ = {û∞1 , û∞2 , û∞3 } and k = {k1, k2, k3}.
We suppose, at least initially, that the turbulent Reynolds number

rt = εRΛ, (2.5)

is O(1) where

RΛ ≡ U∞Λ/ν (2.6)

is the ordinary Reynolds number based on Λ, and ν is the kinematic viscosity. This
corresponds to a kind of generic scaling from which the limits rt → ∞ and rt → 0
can be obtained as special cases. Then in the asymptotic limit ε→ 0, RΛ →∞ with rt
held fixed at O(1), the flow divides itself into the four asymptotic regions (Goldstein
1997) shown in figure 1.

The first of these, region I, is a primarily inviscid region of dimension O(Λ) sur-
rounding the leading edge, in which the motion can be treated as a linear perturbation
about a uniform flow.

Beneath the linear region I is region II, where the flow is governed by the linearized
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unsteady boundary-layer (LUBL) equations (Goldstein 1983; Gulyaev et al. 1989).
However, the mean boundary-layer thickness, Λδ, continues to grow with x, and
this solution eventually becomes invalid at the downstream distance ΛRΛ, where Λδ
becomes of the order of the spanwise length scale of the unsteady boundary-layer
flow, which is assumed to be of the same order as the integral scale Λ. A new solution
must then be obtained when

x/RΛ = x∗/ΛRΛ = O(1), (2.7)

i.e. in region III. The flow in this region is now fully three-dimensional, because the
spanwise derivatives in the viscous terms are no longer negligible compared with the
normal derivatives. It will be shown subsequently that the unsteady components of
the motion move out of the boundary layer with increasing downstream distance, so
that only the low-frequency components of the motion remain. The flow then evolves
on the slow time scale

t̄ ≡ t/RΛ, (2.8)

and is governed by the unsteady boundary-region equations (Kemp 1951), which are
just the Navier–Stokes equations with the streamwise derivatives neglected in the
viscous and pressure-gradient terms.

Since the LUBL solution grows linearly with x, it is easy to see from (2.7) that the
solution in region III can be linearized about the undisturbed, Blasius solution when

εRΛ = rt << 1. (2.9)

Boundary conditions for the linearized unsteady boundary-region (LUBR) equations
are obtained by requiring their solution to match with the upstream boundary-layer
solution and with the outer flow above region III (i.e. the flow in region IV) where
the leading-order perturbed flow is influenced by mean boundary-layer displacement
effects, due to the increased boundary-layer thickness in this region.

The flow in the large outer region IV is in general nonlinear and corresponds to the
usual equilibrium decay of grid-generated turbulence. It can, however, be linearized
when the turbulent Reynolds number rt is much less than one and, more generally,
will behave locally like a convected perturbation of the type (2.1) over distance xL,
for which

xL << 1/ε = RΛ/rt, (2.10)

which means, in effect, that it can be linearized over such distances. These order-of-
magnitude estimates are somewhat optimistic in that they do not properly account for
the enhanced nonlinearity that can be produced by the smaller scale components of
the turbulence. They should, however, be good enough to provide adequate estimates
of the overall behaviour of the flow.

Finally, we suppose that the upstream turbulence εu∞ is specified at a distance −x†L,
which is large compared to unity, but small compared to RΛ, i.e.

1 << −x†L << RΛ. (2.11)

The mean flow in this region will, in general, be non-uniform, but it will vary slowly
enough that the upstream boundary condition (2.1) can still be specified on a local
basis independently of that flow.
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3. The linear inviscid solution
The inviscid flow in region I can be determined by generalized rapid-distortion

theory (Hunt 1973; Goldstein 1978). Since the problem is linear, we need only
consider individual Fourier components (2.3) of the upstream distortion.

For the infinitely-thin flat plate being considered here, the flow in this region (where
x and y are order one) is given by (Goldstein 1978)

u = ı̂+ · · ·+ ε (∇φ+ u∞) , (3.1)

p = − 1
2

+ · · · − ε
(
∂φ

∂t
+
∂φ

∂x

)
, (3.2)

where · · · represents mean boundary-layer displacement terms and, in view of (2.2),
the perturbation potential φ is determined by Laplace’s equation

∇2φ = 0, (3.3)

subject to the boundary conditions

φ→ 0 as x→ −∞, (3.4)

φ = 0 at y = 0, x < 0, (3.5)

φy + u∞2 = 0 at y = 0, x > 0, (3.6)

φ→ 0 as y →∞. (3.7)

The complete solution of the boundary-value problem (3.3)–(3.7) can be obtained
using the Wiener–Hopf technique (e.g. Choudhari 1996), but our interest is in the
asymptotic behaviour of the solution at large downstream distances, which can more
easily be found by application of the method of variation of parameters. When the
result is substituted into (3.1) and (3.2), we obtain

u = ı̂+ · · ·+ εu(1)ei[k1(x−t)+k3z] + · · · , (3.8)

p = − 1
2

+ · · · , (3.9)

where

u(1)
σ (y) = û∞σ eik2y +

ikσ
γ
û∞2 e−γy for σ = 1, 3, (3.10)

u
(1)
2 (y) = û∞2 (eik2y − e−γy), (3.11)

with

γ ≡ (k2
1 + k2

3)1/2. (3.12)

The inviscid perturbation velocity at the surface of the plate is then given by

u
(1)
1 (0) = û∞1 +

ik1

γ
û∞2 , (3.13)

u
(1)
3 (0) = û∞3 +

ik3

γ
û∞2 . (3.14)
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4. The linear boundary-layer solution
Since the mean boundary layer is of the Blasius type, the solution in region II,

corresponding to the single Fourier-component inviscid solution (3.8)–(3.12), is of the
form

u =

{
F ′(η),

(
1

2xRΛ

)1/2

(ηF ′ − F), 0

}

+ε

{
ū0(x̄, η),

(
2x̄k1

RΛ

)1/2

v̄0(x̄, η), w̄0(x̄, η)

}
ei(k3z−k1t), (4.1)

with the Blasius function determined, in the usual way, by

F ′′′ + FF ′′ = 0, (4.2)

with F(0) = 0, F ′(0) = 0, F → η − β, with β = 1.217 · · · (Schlichting 1955), as η →∞,
where

η = y

(
RΛ

2x

)1/2

= O(1), (4.3)

and

x̄ = k1x, (4.4)

is a scaled streamwise variable.
The velocity perturbation is determined by the LUBL equations

−iū0 + F ′
∂ū0

∂x̄
− F

2x̄

∂ū0

∂η
− 1

2x̄
ηF ′′ū0 + F ′′v̄0 =

1

2x̄

∂2ū0

∂η2
,

−iw̄0 + F ′
∂w̄0

∂x̄
− F

2x̄

∂w̄0

∂η
=

1

2x̄

∂2w̄0

∂η2
,

 (4.5)

∂ū0

∂x̄
− η

2x̄

∂ū0

∂η
+
∂v̄0

∂η
+ i

(
k3

k1

)
w̄0 = 0, (4.6)

subject to the boundary conditions

ū0 = v̄0 = w̄0 = 0 at η = 0 (4.7)

and that ū0 e−ix̄ and w̄0 e−ix̄ match onto (3.13) and (3.14) as η →∞.
Since k1 and k3 only appear as multiplicative factors in (4.6), the boundary condi-

tions (3.13) and (3.14) suggest that we divide up the solution in the following way
(Gulyaev et al. 1989):

ū0 =

(
û∞1 +

ik1

γ
û∞2

)
ū(0) +

ik3

k1

(
û∞3 +

ik3

γ
û∞2

)
ū, (4.8)

v̄0 =

(
û∞1 +

ik1

γ
û∞2

)
v̄(0) +

ik3

k1

(
û∞3 +

ik3

γ
û∞2

)
v̄, (4.9)

and

w̄0 =

(
û∞3 +

ik3

γ
û∞2

)
w̄. (4.10)

Then {ū, v̄, w̄} and {ū(0), v̄(0), 0} each satisfy the momentum equations (4.5), the latter
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satisfies the continuity equation (4.6), while the former satisfies

∂ū

∂x̄
− η

2x̄

∂ū

∂η
+
∂v̄

∂η
+ w̄ = 0. (4.11)

Both components satisfy the no-slip condition (4.7) at the wall, and matching with
(3.13) and (3.14) requires

ū→ 0, w̄ → eix̄

ū(0) → eix̄

}
as η →∞. (4.12)

The solution of (4.5) and (4.6) (or (4.11)) must satisfy appropriate upstream bound-
ary conditions as x̄→ 0. The time-dependent terms, −iū0 and −iw̄0, drop out of (4.5)
in this limit, and the relevant solutions are easily shown to be

ū→ 1
2
x̄ηF ′′, v̄ → 1

4

(
η2F ′′ − 3ηF ′ − F) , w̄ → F ′

ū(0) → 1
2

[
(ηF ′)′ + F ′

]
, v̄(0) → 1

4x̄

[
η (ηF ′)′ − F]

 as x̄→ 0, (4.13)

which shows that the streamwise velocity ū(0) remains bounded while ū grows linearly
with x̄.

The solution in region II depends on the frequency parameter, k1, only through
the scaled streamwise variable x̄. The limit x̄ → 0 may therefore be interpreted as
either the low-frequency limit, k1 → 0, with x fixed, or the upstream limit, x→ 0, with
k1 fixed. Likewise, the limit x̄ → ∞ may be interpreted as the high-frequency limit,
k1 →∞, with x held fixed, or the downstream limit, x→∞, with k1 fixed.

Solutions for the two-dimensional component
{
ū(0), v̄(0), 0

}
were obtained by

Lighthill (1954) using an integral technique. The most recent numerical solutions
for this quantity are given by Choudhari (1996). His results show that the disturbance
velocity moves out of the boundary layer as x̄ increases. Our interest here is in the
three-dimensional component, {ū, v̄, w̄}, whose streamwise velocity initially increases
linearly with x̄ at a rate which increases with increasing spanwise wavenumber. Nu-
merical solutions for this component are also presented by Choudhari (1996). His
results show that the streamwise velocity exhibits a pronounced peak at an order-one
value of η, which increases toward the boundary-layer edge as x̄ increases, but at
a slower rate than the

{
ū(0), v̄(0), 0

}
component. As noted by Choudhari (1996), this

streamwise velocity profile strongly resembles that of the Klebanoff modes generated
by turbulence in the free stream – even though these results correspond to a single
Fourier component of the free-stream motion.

Figure 2 is a plot of the peak of the streamwise velocity perturbation magnitude, and
the associated transverse position ηmax, as a function of x̄ computed using a second-
order, finite-difference scheme. It clearly shows the movement of the peak location
toward the edge of the boundary layer with increasing x̄. In the next subsection, we
consider the asymptotic solution for the {ū, v̄, w̄} component as x̄→∞.

4.1. Asymptotic solution for x̄→∞
This solution is of the WKBJ form

{ū, v̄, w̄} =

{
Ū(η, x̄),

V̄ (η, x̄)

(2x̄)1/2
, W̄ (η, x̄)

}
eix̄−(2x̄)1/2Θ(η), (4.14)

in the region where η = O(1).
Substituting this into the LUBL equations, and taking the limit as x̄ → ∞, shows



178 S. J. Leib, D. W. Wundrow and M. E. Goldstein

0.4

0.3

0.2

0.1

0 2 4 6 8 10

100806040200

1

2

3

4

(b)

(a)

|u |max

gmax

x

x

Figure 2. Downstream evolution of (a) the peak of the streamwise velocity perturbation
magnitude and (b) it associated transverse position.

that

Θ ′2 = i(F ′ − 1), (4.15)

at lowest approximation, and at next order that the crossflow velocity amplitude W̄
is determined by (

F ′Θ − FΘ ′) W̄ = 2Θ ′W̄ ′ +Θ ′′W̄ , (4.16)

with a similar equation for Ū.
Equation (4.16) is easily integrated to show that

w̄ =
c0(x̄)

(Θ ′)1/2
eH(η)+ix̄−(2x̄)1/2Θ, (4.17)

where

Θ(η) = e−iπ/4

∫ ∞
η

(1− F ′)1/2dη, (4.18)

H ≡ 1

2

(
lnF ′′ +

∫ η

0

F ′Θ
Θ ′

dη

)
, (4.19)

and c0(x̄) is given by (A 11) in Appendix A, which clearly shows that w̄ decays
exponentially fast as x̄ → ∞ provided Θ = O(1). But Θ → 0 as η → ∞, and the
WKBJ approximation therefore breaks down, i.e. it has a turning point, when

(2x̄)1/2Θ = O(1), (4.20)
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or, in view of the fact that F → η̄ + (A/η̄2) exp(− 1
2
η̄2) as η̄ = η − β → ∞, with

A = 0.331 (Schlichting 1955), when

8x̄A = η̄3eη̄
2/2. (4.21)

A new solution, therefore, has to be obtained in this region, which we refer to as
the edge layer. The relevant expansion for this region was first proposed by Gulyaev
et al. (1989) and is developed here in more detail in Appendix A.

While the solution (4.17) is exponentially small at η = 0, it does not vanish there.
However, it can be cancelled out at this point by adding a multiple of the solution
corresponding to the other root of (4.15). This amounts to replacing Θ(η) by

Θ → 2Θ(0)−Θ(η), (4.22)

in (4.17), which also satisfies (4.16). The corresponding solution for w̄ is exponentially
smaller than (4.17) for all η > 0 and is therefore negligible there. A similar procedure
can be used for the other velocity components. But in doing this, use has to be made
of an additional exact solution discovered by Lam & Rott (1960). The result is again
negligible compared with the primary solution for all η > 0.

The WKBJ solution (4.17) bears some resemblance to the large-Reynolds-number
asymptotic solution of the Orr–Sommerfeld equation. However, the latter solution
has its turning point near the wall, while (4.17) breaks down near the edge of the
boundary layer and is therefore not connected to the Tollmien–Schlichting waves
(Gulyaev et al. 1989).

The present analysis shows that the velocity fluctuations move out into the edge
layer like (ln x̄)1/2 as x → ∞ with k1 fixed (Brown & Stewartson 1973) and that
the boundary-layer fluctuations at any given x are dominated by the frequencies
corresponding to x̄ = k1x = O(1). The numerical results, together with the asymptotic
solution, therefore suggest that the streamwise velocity fluctuations are dominated by
their low-frequency components, k1 << 1, at the large downstream distances where
x >> 1. And since the actual physical solution is multiplied by the wavenumber ratio
k3/k1, the small-spanwise-length-scale components should exhibit the most rapid
growth, which is consistent with the experimental observations of Klebanoff and
subsequent researchers.

Klebanoff found the spanwise wavelength to be five times larger than the boundary-
layer thickness, but in most (if not all) of the more recent experiments (Kendall 1985;
Westin et al. 1994), the spanwise wavelength was nearly equal to the boundary-layer
thickness, so that the relevant solutions cannot be determined by the linearized
boundary-layer equations.

5. The linear boundary-region equations
As the low-frequency, small-spanwise-length-scale components of the unsteady

motion grow downstream, and the boundary-layer thickness continues to increase,
the boundary-layer equations eventually become invalid. This occurs when x = O(RΛ)
(see 2.7) and, since x̄ = k1x remains order one, it implies that k1RΛ = O(1). The
decomposition of the velocity components, (4.8)–(4.10), suggests that the pressure
fluctuations should be of the form

p = − 1
2

+ ε

{
iκ

(
k1

RΛ

)1/2(
û∞3 +

ik3

γ
û∞2

)
p̄+

k1

RΛ

(
û∞1 +

ik1

γ
û∞2

)
p̄(0)

}
ei(k3z−k1t). (5.1)
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Introducing (5.1), along with the rest of the scalings in § 4, into the linearized
Navier–Stokes equations, we find that the dominant three-dimensional component,
{ū, v̄, w̄, p̄} is determined by

−iū+ F ′
∂ū

∂x̄
− F

2x̄

∂ū

∂η
− ηF ′′

2x̄
ū+ F ′′v̄ =

1

2x̄

∂2ū

∂η2
− κ2ū, (5.2)

−iv̄ + F ′
∂v̄

∂x̄
− F

2x̄

∂v̄

∂η
− 1

(2x̄)2
[η(ηF ′)′ − F]ū+

(ηF ′)′

2x̄
v̄ = − 1

2x̄

∂p̄

∂η
+

1

2x̄

∂2v̄

∂η2
− κ2v̄,

(5.3)

−iw̄ + F ′
∂w̄

∂x̄
− F

2x̄

∂w̄

∂η
= κ2p̄+

1

2x̄

∂2w̄

∂η2
− κ2w̄, (5.4)

∂ū

∂x̄
− η

2x̄

∂ū

∂η
+
∂v̄

∂η
+ w̄ = 0, (5.5)

in the limit k1, RΛ
−1 → 0 with k1RΛ,x̄, y = O(1), and we have put

κ ≡ k3/ (k1RΛ)1/2 = O(1), (5.6)

with k1 > 0. Solutions for k1 < 0 are obtained by taking complex conjugates of these
results (see § 6).

Following Kemp (1951) and Davis & Rubin (1980), we refer to (5.2)–(5.5) as
the linearized, unsteady boundary-region (LUBR) equations. They are simply the
linearized Navier–Stokes equations with the streamwise derivatives neglected in the
viscous and pressure-gradient terms and, as already shown, they correspond to a
rational asymptotic limit of the Navier–Stokes equations.

These equations must be solved subject to appropriate far-field and upstream
boundary conditions which, despite the similar nature of the equations, are rather
more intricate than those for the boundary-layer equations. We derive the edge
conditions for η →∞ by first considering the flow above region III (i.e. in region IV).
The large-η asymptotic solution of (5.2)–(5.5) that matches with the solution in this
region then provides the correct edge boundary condition. The upstream condition
must now be specified over the entire region y0 = η (2x̄)1/2 = O(1), which includes the
boundary-layer region η = O(1), in order to account for the increased boundary-layer
thickness in region III.

We again only need to consider a single Fourier component of the upstream
distortion velocity (2.3) but, as noted in § 2, the mean boundary-layer displacement
now affects the solution for the perturbed flow at leading order. In the outer region
where k1x, k1y = O(1), the velocity expands like

u =

{
∂Ψ

∂y
,−∂Ψ

∂x
, 0

}
+ εu(0)ei(k3z−k1t) + · · · , (5.7)

where the mean-flow stream function, Ψ, is given to the required order of accuracy
by (Van Dyke 1975, p. 136)

Ψ = y − βRe

(
2(x+ iy)

RΛ

)1/2

, (5.8)

where Re denotes the real part.
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Then, since the pressure fluctuations vanish in this region, the perturbation velocity
u(0) = u(0)(x̄, y) is determined by(

−i +
∂

∂x̄
− ∂Ψ

∂x̄

∂

∂y
− 1

k1RΛ

∂2

∂y2
+ κ2

)
u(0) = 0, (5.9)

which becomes (
−i +

∂

∂x̄
− 1

k1RΛ

∂2

∂Ψ 2
+ κ2

)
u(0) = O(k1), (5.10)

upon introducing Ψ as a new independent variable. The solution that satisfies the

upstream boundary condition in (2.3) for |k1y| <<
∣∣∣x̄†L∣∣∣, as well as the continuity

equation, is

u(0) = û∞ei(x̄+κ2Ψ )−(κ2+κ2
2)(x̄−x̄†L), (5.11)

where x̄†L ≡ k1x
†
L and

κ2 ≡ k2/ (k1RΛ)1/2 , (5.12)

is a scaled transverse wavenumber. It follows from (5.8) and (A 1) that

Ψ → y(0)

(k1RΛ)1/2
as k1y → 0, x̄ > 0, (5.13)

and therefore that

u(0) → û∞ei(x̄+κ2y
(0))−(κ2+κ2

2)x̄ (5.14)

as region III is approached, where

y(0) ≡ (2x̄)1/2 η̄, (5.15)

and use has been made of (2.11).

5.1. Far-field boundary conditions

The results of the previous section can now be used to determine the outer-edge
boundary conditions for the boundary-region equations. Using the large-η form of
the Blasius solution in (5.2)–(5.5), and rewriting in terms of y(0), yields

−iū+
∂ū

∂x̄
=

∂2ū

∂y(0)2
− κ2ū, (5.16)

−iv̄ +
∂v̄

∂x̄
+

1

2x̄
v̄ − β

(2x̄)2
ū =

−1

(2x̄)1/2

∂p̄

∂y(0)
+

∂2v̄

∂y(0)2
− κ2v̄, (5.17)

−iw̄ +
∂w̄

∂x̄
= κ2p̄+

∂2w̄

∂y(0)2
− κ2w̄, (5.18)

∂ū

∂x̄
− β

(2x̄)1/2

∂ū

∂y(0)
+ (2x̄)1/2 ∂v̄

∂y(0)
+ w̄ = 0. (5.19)

The solution to (5.16)–(5.19) that matches with the outer solution is

ū = 0, (5.20)

v̄ =
ieix̄

(κ2 − i |κ|) (2x̄)1/2

{
eiκ2y

(0)−(κ2+κ2
2)x̄ − e−|κ|y

(0)
}

+
|κ| eix̄−|κ|y(0)

(2x̄)1/2

∫ x̄

0

g(x̆)e−ix̆dx̆, (5.21)
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w̄ =
eix̄

κ2 − i |κ|
{
κ2 eiκ2y

(0)−(κ2+κ2
2)x̄ − i |κ| e−|κ|y(0)

}
+ κ2eix̄−|κ|y(0)

∫ x̄

0

g(x̆)e−ix̆dx̆, (5.22)

and

p̄ = g(x̄)e−|κ|y
(0)

, (5.23)

where we have used (2.4) with k1 << k2, k3.
Equations (5.20)–(5.23) then provide the form of the far-field boundary conditions

to be imposed on the boundary-region equations. The function g(x̄) is, at this point,
unknown, but its behaviour as x̄ → 0 will be determined in the next subsection by
matching (5.23) with the solution in region I.

5.2. Upstream behaviour of the boundary-region solution

Since the boundary-region problem describes the evolution of the low-frequency
Fourier components downstream of the initial boundary-layer stage, it follows that
the appropriate upstream matching conditions for this problem are given by the
low-frequency, downstream limit of the solutions in regions I and II (i.e. the limit as
x→∞ with x̄ << 1).

The solution for x̄ → 0 with η = O(1) can be obtained in the form of a power
series as

{ū, v̄, w̄, p̄} =

∞∑
n=0

(2x̄)n/2
{

2x̄Un(η), Vn(η),Wn(η),
1

(2x̄)1/2
Pn(η)

}
. (5.24)

Substituting this into the LUBR equations (5.2)–(5.5), and collecting like powers
of x̄, yields a system of ordinary differential equations for the terms in the series
(5.24). The governing equations and boundary conditions for the first two terms in
the series are given in Appendix B. The boundary conditions for η →∞ are obtained
by matching (5.24) onto the limit of the solution (5.20)–(5.23) as x̄→ 0 with η = O(1).

We can form a composite solution from the power series (5.24), which is valid for
x̄ → 0, η = O(1), and from (5.20)–(5.22), which are valid for x̄ → 0, y(0) = O(1)
(but not uniformly valid as y(0) → ∞), to obtain a small-x̄ asymptotic solution to
the LUBR equations that is uniformly valid over the entire region, y(0) = O(1). This
solution can be constructed by adding (5.24) to (5.20)–(5.23) and subtracting out the
‘common parts’ to obtain

ū→ 2x̄U0 + (2x̄)3/2U1, (5.25)

v̄ → V0 + (2x̄)1/2 V1 +
i

(κ2 − i |κ|) (2x̄)1/2
{eiκ2(2x̄)1/2η̄e−(κ2+κ2

2)x̄ − e−|κ|(2x̄)1/2η̄}

−
(

3β

4
− 1

2
g1 |κ| (2x̄)1/2

)
e−|κ|(2x̄)1/2η̄ − v̄c , (5.26)

w̄ →W0 + (2x̄)1/2 W1 +
1

(κ2 − i |κ|){κ2e
iκ2(2x̄)1/2η̄e−(κ2+κ2

2)x̄ − i |κ| e−|κ|(2x̄)1/2η̄}

−3β |κ|
4

(2x̄)1/2 e−|κ|(2x̄)1/2η̄ − w̄c, (5.27)

as x̄ → 0, where the constant g1 is given by (B 15), the ‘common parts’, v̄c and w̄c,
are given in Appendix C, and we have retained the first two terms in the expansion
(5.24).
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This completes the specification of the boundary-region problem. In the next
subsection, we describe the numerical method used to obtain solutions.

5.3. Numerical solution

A streamwise marching procedure, based on second-order central differences in η
and backward differences in x̄, was used to solve the LUBR equations. The pressure
was computed on a grid staggered in the transverse direction relative to that for the
velocity components.

As already mentioned, the upstream boundary conditions must now be specified
over the entire region y0 = O(1), which includes the region η = O(1). The composite
solutions (5.25)–(5.27), which are uniformly valid in this region, were used as starting
conditions. It was necessary to retain the first two terms in the upstream expansion
as x̄→ 0 in order to successfully start the procedure.

The edge boundary conditions (5.20)–(5.23) involve the unknown function g(x),
induced by the pressure in the outer region. Its behaviour as x̄→ 0 is given by (B 11)
and (B 15). For x̄ = O(1), this function was eliminated from the edge conditions by
imposing mixed boundary conditions on the transverse velocity components and the
pressure. The resulting edge conditions are

ū→ 0, (5.28)

∂v̄

∂η
+ |κ| (2x̄)1/2 v̄ → −ei(x̄+κ2(2x̄)1/2η̄)e−(κ2+κ2

2)x̄, (5.29)

∂w̄

∂η
+ |κ| (2x̄)1/2 w̄ → iκ2 (2x̄)1/2 ei(x̄+κ2(2x̄)1/2η̄)e−(κ2+κ2

2)x̄, (5.30)

and
∂p̄

∂η
+ |κ| (2x̄)1/2 p̄→ 0, (5.31)

as η →∞.
Second-order finite differences were used in these boundary conditions to obtain

a block tri-diagonal linear system of equations, which was solved using a standard
sparse system algorithm.

Figure 3 shows profiles of the magnitudes of the streamwise and spanwise perturba-
tion velocity profiles at various values of x̄ computed from the LUBR equations with
κ = 1, κ2 = −1. The streamwise velocity profiles look similar to the corresponding
LUBL profiles (Choudhari 1996), but the strong spanwise ellipticity effects cause the
peak level, which initially increases linearly with x̄, to rapidly decrease to zero. The
spanwise velocity profiles are quite different from the LUBL profiles (cf. Choudhari
1996, figure 3b) due to the free-stream matching requirements of (5.30).

The initial linear growth and subsequent decrease of the peak in the streamwise
perturbation velocity profile is more clearly shown in figure 4, which is a plot of |ū|
as a function of x̄ at η = 1.64, where the peak in the profiles occurs.

Results from additional computations show that the peak of the |ū| profiles reaches
a maximum and then decreases to zero very rapidly for larger values of κ and
(absolute value of) κ2; at smaller values, the initial growth and ultimate decay are
much more gradual.

The LUBR equations possess an asymptotic solution of the form

ū =
1

κ2
û

(
κ2x̄, η;

κ2

κ

)
, (5.32)
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Figure 3. Profiles of (a) streamwise and (b) spanwise perturbation velocity at the
indicated values of x̄.

v̄ = v̂

(
κ2x̄, η;

κ2

κ

)
, (5.33)

w̄ = ŵ

(
κ2x̄, η;

κ2

κ

)
, (5.34)

in the limit as κ→∞ with κ2/κ = O(1), where û, v̂, and ŵ are now determined by the
linearized steady boundary-region equations.

Figure 5(a) is a plot of κ2ū vs. κ2x̄ at fixed κ2/κ = −1, η = 1.64 for various values
of κ > 1. These results clearly collapse on a single curve for κ > 2, and even the κ = 1
result is not too far from this curve. In figure 5(b), we have plotted the same results
vs. κx̄1/2. Notice that, except for a small region near the origin, the steady solution
increases linearly with κx̄1/2 (and therefore with the boundary-layer thickness) up to
κx̄1/2 of about 0.5. This might lead one to suppose that the Klebanoff modes can
be represented as a single steady mode (Bertolotti 1997), but, as we shall see, the
unsteady (but low-frequency) solutions make the dominant contribution to the r.m.s.
of the streamwise velocity fluctuations in the boundary layer.

On the other hand, the LUBR equations reduce to the LUBL equations in the limit
as κ→ 0. Figure 6 shows plots of |ū| vs. x̄ at fixed κ2/κ = −1, and η again equal to
1.64, at various values of κ 6 0.1. The dashed curve denotes the solution calculated
from the LUBL equations. The results show that solutions to the LUBR equations
approach the LUBL results very slowly as κ → 0 so that the LUBL solution used
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Figure 4. Evolution of the boundary-region streamwise velocity perturbation magnitude at
η = 1.64 for κ = 1, κ2 = −1.
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Figure 5. Plot of κ2|ū| vs. (a) κ2x̄ and (b) κx̄1/2 for various values of κ = −κ2 > 1.

by Gulyaev et al. (1989) to calculate the streamwise velocity fluctuations is only valid
for very small spanwise wavenumbers. This shows that the full LUBR solutions must
be used to describe the experimental results in which the spanwise wavelength is
invariably of the order of the boundary-layer thickness.

Figure 7 is a plot of profiles of the normalized streamwise velocity perturbation
|̄u|/|̄u|max for various values of x̄, with κ = 1, κ2 = −1. The dashed curve is the mode
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ηF ′′/ (ηF ′′)1.64.

shape ηF ′′, normalized by its peak value, that appears in the upstream boundary
condition (4.13). This is the mode shape originally used by Taylor (1939), and later by
Klebanoff (1971), to fit their experimental data. The profiles from the LUBR solution
clearly come quite close to collapsing on this mode shape.

In the next section, we derive an expression for the mean-square streamwise velocity
perturbation due to a broadband turbulent flow by superposing the individual Fourier
component LUBR solutions.

6. Statistical quantities in the boundary layer
An important advantage of the linear analysis is that the individual Fourier-

component solutions can be superposed to evaluate the statistical quantities of interest
in terms of the upstream turbulence field. The decomposition (4.8)–(4.10) provides the
relevant ‘transfer functions’ which relate the fluctuating velocity within the boundary
layer to the Fourier coefficients of the upstream turbulence (Hunt 1973; Goldstein &
Durbin 1980).
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The quantity of most interest is the two-point, time-delayed, streamwise velocity
correlation

R11(τ, ζ) ≡ 〈u′(x+ k̂ζ, t+ τ)u′(x, t)〉, (6.1)

where εu′ ≡ u− F ′(η) and 〈 〉 denotes the expectation value. Then, in view of (4.8),

R11(τ, ς) =

∫∫∫ ∞
−∞

ei(k3ς−k1τ)m∗`(x, y, k)mm(x, y, k)Φ∞`m(k)dk, (6.2)

where Φ∞`m is the upstream turbulence spectral tensor (see Batchelor & Proudman
1954; Hunt 1973), repeated indices are summed, the * denotes complex conjugation
and, in general,

m1 = ū(0); m2 =
ik1

γ
ū(0) − k2

3

k1γ
ū; m3 =

ik3

k1

ū, (6.3)

where γ is defined by (3.12).
The simplest upstream spectral tensor is probably the one corresponding to isotropic

turbulence, namely

Φ∞ij =
E(k)

4πk4
(k2δij − kikj), (6.4)

where E(k) is the three-dimensional spectrum function, δij denotes the Kronecker

delta, and k =
(
k2

1 + k2
2 + k2

3

)1/2
. However, it is very difficult to generate truly isotropic

turbulence in a laboratory experiment, and Batchelor (1946, 1953) and Chandrasekhar
(1950) proposed a less restrictive, axisymmetric turbulence model (see also Lindborg
1995). Using the results of Appendix D, the corresponding spectral tensor can be
written as

Φ∞ij =
1

k2⊥

(
Φt − 2k2

1

k2⊥
Φ1

)
(k2
⊥δ
⊥
ij − k⊥i k⊥j)

+
1

k2⊥
Φ1(k

2
1δ
⊥
ij − k1 k⊥i δj1 − k1 k⊥j δi1 + k2

⊥δi1δj1), (6.5)

where

k⊥i ≡ ki − δi1k1, (6.6)

are the cross-stream wavenumber components,

δ⊥ij ≡ δij − δi1δj1, (6.7)

is the cross-stream Kronecker delta, k⊥ =
(
k2

2 + k2
3

)1/2
, and the scalars Φ1 (k1, k⊥)

and Φt (k1, k⊥) are related to the longitudinal and lateral one-dimensional spectrum
functions, E1(k1) and Et(k1), respectively, by

E1(k1) = 2π

∫ ∞
0

Φ1k⊥dk⊥, (6.8)

and

Et(k1) = 2π

∫ ∞
0

Φt k⊥dk⊥. (6.9)

For isotropic turbulence Φt − 2(k1/k⊥)2Φ1 = Φ1 = k2⊥E/4πk4, and (6.5) reduces to
(6.4).

The contribution of ū(0) to the integral in (6.2) is smaller than that of ū by a factor



188 S. J. Leib, D. W. Wundrow and M. E. Goldstein

of (k1/k3)
2 in the isotropic case, where the two components make independent con-

tributions (Gulyaev et al. 1989), and by a factor of k1/k3 in the general axisymmetric
case, which involves a cross-product term that drops out in the isotropic case. Then
(5.6) shows that the ū(0) terms are asymptotically small when RΛ → ∞ and x̄ is in
the downstream region where the LUBR equations apply. We therefore neglect these
terms and introduce the rescaled variable

ũ
(

1
2
k2

3δ
2, η; k2/k3, κ

) ≡ κ2ū (x̄, η; κ2, κ) , (6.10)

where

δ =
(
2x/RΛ

)1/2
, (6.11)

along with (6.3) and (6.5) into (6.2) to obtain

R11(τ, ς) = R2
Λ

∫∫∫ ∞
−∞

Φt(k1, k⊥)

k2
3

∣∣∣∣ũ( 1
2
k2

3δ
2, η;

k2

k3

, κ

)∣∣∣∣2 ei(k3ς−k1τ)dk. (6.12)

Our calculations show that |ũ|2 decays very rapidly as κ → ∞, so that the main
contribution to the integrand comes from the neighbourhood of k1 = 0. It therefore
follows that the mean-square streamwise velocity fluctuation is given by〈

u′2
〉 ≡ R11(0, 0) = RΛ

∫ ∞
0

Φt(0, k⊥)K(k⊥δ, η)k⊥dk⊥, (6.13)

in the limit as RΛ →∞ with δ = O(1), where we have put

K(k⊥δ, η) ≡ 2

∫ ∞
0

∫ 2π

0

1

sin2 θ

∣∣∣∣ũ( 1
2
k2
⊥δ

2 sin2 θ, η, cotan θ,
sin2 θ

s1/2

)∣∣∣∣2 dθ ds, (6.14)

introduced the polar coordinates

k3 = k⊥ sin θ, k2 = k⊥ cos θ, (6.15)

along with the new integration variable

s = k1RΛ/k
2
⊥ = sin2 θ/κ2, (6.16)

and used the relation ū(−x̄, η, iκ2, iκ) = ū∗(x̄, η, κ2, κ), which follows from the governing
equations and boundary conditions, for the k1 < 0 components.

These results show that only the transverse spectral function, Φt, of the upstream
turbulence is of direct relevance to the generation and growth of Klebanoff-type
disturbances in the boundary layer, as opposed to the longitudinal spectrum function
which is most often documented in the experiments. The former function can be
determined from measurements of the transverse correlation function

R∞⊥(ξ − τ, r⊥) = 〈u⊥(x− t, y, z)u⊥(x′ − t′, y′, z′)〉 , (6.17)

where u⊥ = (u2
2 + u2

3)
1/2, ξ = x′ − x, τ = t′ − t, and r⊥ = ((y′ − y)2 + (z′ − z)2)1/2, by

taking the Hankel transformation of its longitudinal Fourier transform

Φt(k1, k⊥) = 2

∫ ∞
0

r⊥
∫ ∞
−∞
R∞⊥(ξ − τ, r⊥)ei(ξ−τ)k1d(ξ − τ)J0(r⊥k⊥) dr⊥, (6.18)

where J0 denotes the Bessel function of the first kind in the usual notation.
As far as we know, no such measurements have been made, so the form of

this function is still unknown and may differ considerably from one experiment
to another. Moreover, the present results show that the velocity fluctuations in the
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Figure 8. Plot of the kernel function K computed from the LUBR solutions (dotted) and the
curve fit (7.1) (solid).

boundary layer are determined only by the low-frequency portion of Φt, which is the
part of the spectrum that is likely to be highly anisotropic (Batchelor 1956, p. 91) –
retaining a history of the upstream screens or grid. The low-frequency components of
the turbulence should therefore possess a relatively high degree of periodicity in the
transverse direction. We will make use of these insights in the next section where the
LUBR results are compared with experimental data.

7. Numerical results and comparisons with experimental data
Numerical computations of individual Fourier-component solutions of the LUBR

equations were carried out over a broad range of scaled transverse wavenumbers, κ2

and κ, in order to calculate the mean square of the streamwise velocity fluctuations
in the boundary layer. These solutions enter into the expression for the mean-square
velocity fluctuation via the kernel function K(k⊥δ, η), defined by (6.14), which, at a
fixed transverse location in the boundary layer, is a function of a single independent
variable. The integral in (6.14) was evaluated using the individual Fourier component
solutions at fixed η = 1.64 (which closely corresponds to the peak location of the
streamwise velocity fluctuations). The result is shown in figure 8 along with a least-
squares fit to the simple functions

K(k∗) = k2
∗[−0.03 e−k∗ + 0.52 e−2k∗ − 0.08 e−3k∗]. (7.1)

Equations (7.1) and (6.13) are used to calculate the peak level of the mean-square
streamwise velocity fluctuation within the boundary layer in the following computa-
tions and comparisons.

Comparisons are made with recent unpublished data of Dr J. M. Kendall (personal
communication) and with data of Roach & Brierley (1992) and Westin et al. (1994). In
the latter two experiments, the investigators attempted to make the incident turbulent
flow as isotropic as possible. However, it is very difficult to control the low-frequency
component of the spectrum that actually enters the boundary layer to produce the
Klebanoff modes. Watmuff (1997) was able to reduce the peak r.m.s. velocity in the
boundary layer by as much as 50% by re-ordering the screens upstream of his test
section according to the quality of their spanwise uniformity. This suggests that even
relatively minor changes in the low-frequency spectral characteristics of the free-
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Figure 9. Normalized root mean square of the streamwise velocity fluctuations in the boundary
layer for isotropic free-stream turbulence at various turbulent Reynolds numbers.

stream turbulence can produce large differences in the r.m.s. velocity in the boundary
layer. The inevitable deviations from pure isotropy that occur at low frequencies in
any experiment may therefore have an important effect on the velocity fluctuations in
the boundary layer. Making use of (7.1) in (6.13) provides a simple and quick method
of assessing the effect of various free-stream turbulence spectra on the boundary-layer
disturbances.

Figure 9 shows numerical results for the normalized r.m.s. of the streamwise
velocity fluctuations, (〈u′2〉/〈u2∞〉RΛ)1/2, plotted vs. δ at η = 1.64. Here 〈u2∞〉 denotes
the scaled mean-square streamwise velocity fluctuation in the free stream. The free-
stream turbulence is assumed to be isotropic with a one-dimensional spectrum given
by (Gulyaev et al. 1989)

E1(k) =
2〈u2∞〉
π

e−6.7k/r
3/4
t

1 + b(2k)5/3
, (7.2)

where b = 1.35/(1 + 35/(2rt)
3/4), with our normalization. For isotropic turbulence, the

normalized r.m.s. streamwise velocity fluctuation depends on the single parameter rt,
which enters only through the one-dimensional spectrum.

Notice that the normalized r.m.s. velocity fluctuation initially increases linearly
with δ, which corresponds to the result obtained by using solutions of the linearized
boundary-layer equations in place of the boundary-region solutions. However, the
spanwise ellipticity effects quickly cause the growth to decrease below the linear
boundary-layer results, with the r.m.s. velocity fluctuations reaching a peak and then
decreasing with further increase of δ. This is because, even for small δ, the boundary-
region solutions selected by the free-stream spectrum do not correspond to small
values of κ and κ2. All the curves reach approximately the same peak level, but those
at larger turbulent Reynolds numbers have greater initial slopes and peak at smaller
values of δ.

These results suggest that the streamwise velocity fluctuations in the boundary
layer can only achieve amplitudes that are three or four times the free-stream level
at RΛ values on the order of a few thousand, which are typical of the recent
experiments. However, the experimentally measured boundary-layer fluctuation levels
can be several times higher than this. An explanation of this discrepancy is given in
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the next subsections, where the linear theory is compared with the experimental data
sets alluded to above.

7.1. Data of Kendall

Dr J. M. Kendall (personal communication) measured the broadband and band-
passed filtered streamwise velocity r.m.s. profiles in the boundary layer over a flat-plate
model with elliptical leading edge. The transverse free-stream turbulence level was
0.26%, the free-stream velocity was 11.6 m s−1, and the transverse integral scale near
the leading edge (estimated from the lateral correlation of the streamwise velocity
fluctuations, Kendall 1990) was 9 mm for this data set, which yields a value for the
turbulent Reynolds number, rt, of about 18. Measurements were taken at streamwise
locations corresponding to εx∗/Λ values of between 0.05 and 0.32. The relatively
small values of rt and εx∗/Λ make this experiment one of the best candidates for
comparison with linear theory. However, the turbulence was generated upstream of a
rather severe (9:1) contraction in this experiment, making the test section turbulence
highly anisotropic. This is clearly seen in figure 13 of Kendall (1998), which shows that
the transverse velocity fluctuations are roughly five times the level of the longitudinal
fluctuations at low frequencies. Since (6.13) shows that only the low-frequency portion
of the transverse free-stream spectrum affects the Klebanoff modes, we would not
expect the isotropic turbulence model to be in good agreement with the data, which
indeed turns out to be the case.

Since, as noted at the end of the previous section, the low-frequency components of
the turbulence can be expected to exhibit significant spanwise periodicity, we represent
the low-frequency portion of the turbulence spectrum by a class of functions that are
potentially more concentrated around a particular transverse wavenumber than the
corresponding isotropic spectrum; namely,

Φt (0, k⊥) =
C〈u2∞〉
π2

k2
⊥e−(k⊥−k̄⊥)2/∆, (7.3)

where k̄⊥ and ∆ are selected to control the position and width of the spectral peak in
the crossflow wavenumber, and the constant C is chosen to satisfy (6.9) at k1 = 0.

It follows from the definition of the one-dimensional spectrum that

Et(0) =
2A1〈u2∞〉

π
, (7.4)

where

A1 =
〈v2∞〉
〈u2∞〉L31, (7.5)

〈v2∞〉 is the scaled mean-square transverse velocity fluctuation in the free stream,
L31 is the integral scale (normalized by Λ) obtained from the time-delayed transverse
velocity correlation, and A1 = 1 for isotropic turbulence. We used figure 13 of Kendall
(1998) to estimate the numerical value of Et(0).

Figure 10 shows a comparison of the normalized r.m.s. streamwise velocity com-
puted using (7.3) with k̄⊥ = −7.0, ∆ = 4, which puts the peak of the spectral function
at k⊥ = 1.0, and A1 = 140. Figure 10(a) shows that the overall r.m.s. velocity is slightly
underpredicted with the chosen values for these quantities, but the lowest frequency
band of the filtered data is in very good agreement with the theory (figure 10b). While
the theoretical curves for the next two frequency bands drop off more rapidly with δ
than the data (figure 10c, d), an increasing amount of the fluctuation energy moves
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Figure 10. Comparison of theoretical results with experimental data of Kendall. (a) Broadband
r.m.s., (b) Band 1: 0–4Hz, (c) Band 2: 4–8 Hz, (d) Band 3: 8–12 Hz.

into the first band as δ increases, so that the theoretical curve remains fairly close
to the broadband experimental results. In fact, Kendall’s data shows that about 50%
of the energy in the longitudinal velocity fluctuations is in the first band at the last
measurement station. The deviation in the higher frequency bands may be due to
nonlinear effects, which will be discussed further in the next two subsections. However,
it should also be kept in mind that the high-frequency part of the solution will be
more affected by streamwise ellipticity effects – neglected in the present analysis –
than the low-frequency part.

7.2. Data of Westin et al.

Westin et al. (1994) conducted experiments at free-stream turbulence levels (based on
the streamwise velocity fluctuations) of 1.35% and 1.5%. The ratio of the transverse
to streamwise velocity fluctuations was approximately 0.9 in the vicinity of the leading
edge. Westin et al. (1994) estimated the transverse integral scale of their free-stream
turbulence to be between 7 and 10 mm. In the following comparisons we use a value
of 8 mm. The corresponding values of RΛ and rt are given in the caption of figure 11.

The scaled streamwise distance εx∗/Λ of the measurement points varied between
0.2 and 2.0. This suggests that linear theory may be applicable to the data points
closest to the leading edge, even though the turbulent Reynolds number is not
particularly small in this experiment, but that further downstream, nonlinear effects
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cannot be ignored. In fact, Westin et al. (1994) report observing turbulent spots near
their last measurement station at the higher turbulence level, and these must certainly
be preceded by nonlinear effects.

As pointed out in the Introduction, solutions to the steady nonlinear boundary-
layer equations (Goldstein & Leib 1993) and the steady nonlinear boundary-region
equations (Wundrow & Goldstein 1998) show that nonlinear interactions in the
boundary layer lead to a kind of spanwise focusing effect which can be interpreted
as the production of small spanwise length scales. Figure 12 of Westin et al. (1994),
as well as the data of Kendall, shows that the amplification of the Klebanoff modes
is accompanied by a transfer of energy into very low frequencies. It might therefore
be expected that the Klebanoff modes behave in a more or less quasi-steady manner
once nonlinear effects come into play, and that the main effect of the nonlinearity is
to enhance smaller transverse-length-scale components.

We therefore attempt to model the nonlinear effects within the context of linear
theory by shifting the peak of the free-stream turbulence spectrum to larger transverse
wave numbers as the disturbance amplitude in the boundary layer increases, in order
to reflect the increasing prevalence of smaller spanwise scales with increased amplitude.
To this end, we used the spectral form (7.3) and allowed the spectral peak location
to increase linearly with the maximum r.m.s. streamwise velocity fluctuation in the
boundary layer

k
(P )
⊥ = k0

⊥ + α1εu
′, (7.6)

where k0⊥ and α1 are constants which, along with A1, were chosen to achieve the best
fit with the data.

Nonlinearity can, of course, also become important in the free stream – in which
case it would no longer be possible to represent the velocity fluctuations by (5.7) and
(5.11) in this region. It might be expected that the boundary-layer nonlinearity is the
more important because, as the experiments show, the Klebanoff mode amplitudes are
considerably larger than those of the free-stream velocity fluctuations. However, the
smaller streamwise length scales of free-stream fluctuations could cause the nonlinear
Reynolds stress terms to be larger in the free stream than in the boundary layer. In
fact, recent nonlinear computations of the flow in region IV (Wundrow & Goldstein
1998) suggest that nonlinearly in the free stream can be quite significant. Since
nonlinear effects are known to produce smaller length scales in almost all turbulent
flows (the cascade effect), however, it is possible that (7.6) could account for the
free-stream nonlinearity as well.

Figure 11 shows the results of the corresponding calculations along with those based
on the linear, isotropic model, which are shown as the dashed curves. These latter
predict the initial growth rate fairly accurately, but the strong spanwise ellipticity
effects quickly cause the growth to diminish, and the curves reach a more or less
constant level. While this level is of about the right order of magnitude, it is well below
the experimental levels. The discrepancy is greatest at the larger turbulent Reynolds
number and increases with downstream distance – consistent with expectations for
the linear theory.

The solid curves in the figure were computed from (7.3) and (7.6) with values
for the parameters given in the caption. These results show that agreement with the
data is greatly improved when low-frequency anisotropy and nonlinear effects are
included. As expected, the A1 values required to fit these data sets are much closer to
the isotropic value than the A1 value used in the Kendall comparison.
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Figure 12. Comparison of theoretical results with experimental data of Roach & Brierley (1992).
Dashed curves are for isotropic turbulence, solid curves for anisotropic form (7.3) with (7.6) and
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PRHI, Tu = 3.0%, RΛ = 2100, rt = 63, A1 = 3.2.
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7.3. Data of Roach & Brierley

Roach & Brierley (1992) carried out experiments over a fairly broad range of free-
stream turbulence levels with a variety of turbulence-generating grids. We compare
our results with data from four of their runs – the others having either no organizing
grid or extremely high turbulence levels. Roach (1987) presents detailed measurements
of the intensities and scales of the turbulence generated by the grids used in the Roach
& Brierley (1992) experiments and suggests empirical formulas for their description.
The upstream turbulence was quite isotropic in these experiments, with the streamwise
and transverse fluctuation levels being nearly identical in the test section. The values
of the physical parameters for the four runs considered are given in the caption of
figure 12.

The data were taken at scaled distances εx∗/Λ that varied from 0.2 to 8.5. These
data then, like the Westin et al. (1994) data, encompass a region where we would
expect the linear theory to apply, but also extend well into the nonlinear regime.

Figure 12 shows the comparisons of the present results with the Roach & Brierley
(1992) data. As in the Westin et al. (1994) case, the linear isotropic curves (dashed)
begin with about the right growth rate, with the greatest deviations being at large
δ and rt. The solid curves are computed from (7.3) and (7.6) with parameter values
indicated in the caption. The values for A1 are somewhat closer to the isotropic value
than those used for the Westin et al. (1994) data, consistent with the relative degree
of isotropy reported for these experiments. Again, larger values of A1 are required at
the higher turbulence levels for a given grid – possibly indicating a greater degree of
low-frequency anisotropy at the higher free-stream velocities.

These results suggest that low-frequency anisotropy plays an important role in the
generation of Klebanoff modes and that nonlinear effects strongly influence their
subsequent growth at the higher turbulent Reynolds numbers.

8. Discussion
We have carried out a systematic linear analysis of the effects of vortical free-

stream disturbances on a laminar flat-plate boundary layer. The upstream distortion
was decomposed into its various Fourier components. The analysis describes the
resulting downstream evolution of the flow, first through an unsteady boundary-layer
region and then into a region where spanwise ellipticity effects are important. The
flow in the latter region is governed by the linearized unsteady boundary-region
(LUBR) equations, which were solved numerically subject to upstream and far-field
boundary conditions derived from strict asymptotic matching of the solutions in the
various regions shown in figure 1. The spanwise ellipticity effects are surprisingly
strong and very quickly influence the growth of the disturbances. The linearized
approximation allows us to superpose the individual Fourier-component solutions to
the LUBR equations and thereby calculate the r.m.s. streamwise velocity fluctuations
in the boundary layer due to a broadband external turbulent flow. The analysis
shows that it is the low-frequency transverse velocity fluctuations in the free stream
that are primarily responsible for the generation of Klebanoff modes. Results were
obtained for isotropic turbulence and for axisymmetric turbulence with low-frequency
anisotropy.

Comparison of the theoretical calculations with recent experimental data shows that
the disturbances produced by the linear mechanism described above closely resemble
the behaviour actually observed for Klebanoff modes. The theoretical results for
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isotropic turbulence predict the initial linear growth with boundary-layer thickness
but, due to the strong pressure coupling effects in the boundary-region equations,
the amplitudes do not reach the levels found in the experiments. Calculations using
an anisotropic model for the free-stream turbulence suggests that low-frequency
anisotropic effects could be a significant factor in explaining the discrepancy.

Detailed comparisons have been made with three different experiments over a
range of flow conditions. The linear theory was compared with the data of Kendall,
which is one of the lowest turbulent-Reynolds-number data sets available. A low-
frequency anisotropic model was used for the free-stream spectrum function. Good
agreement was obtained with the lowest frequency band of his band-passed filtered
data. However, there was an increasing discrepancy with downstream distance from
the leading edge in the higher frequency bands, which may be due to nonlinear
effects. Since the energy content of the low-frequency band increases with increased
Klebanoff-mode amplitude, the theoretical broadband r.m.s. curve also remains quite
close to the data, which suggests that the nonlinear effects may enter in a more
or less quasi-steady manner. It is worth noting that numerical solutions of the
nonlinear, steady boundary-region equations show that nonlinear effects produce
significant local changes in the disturbance velocity profiles, but have only a weak
effect on the spanwise-averaged r.m.s. streamwise velocity fluctuation (Leib et al. 1999).
The theoretical curve for the lowest frequency band in figure 10 might therefore
be relatively unaffected by nonlinearity, which may however influence the higher
frequency bands.

The higher turbulent Reynolds numbers in the Roach & Brierley (1992) and Westin
et al. (1994) experiments may exceed the range of applicability of the purely linear
theory, and the observation of turbulent spots by Westin et al. (1994) suggests that
nonlinear effects are at work there. However, the linear theory has many advantages
which we would like to retain if at all possible. We therefore attempted to modify
it to account for the dominant nonlinear effect, namely enhancement of the small-
transverse-length-scale components (Wundrow & Goldstein 1998), by allowing the
relative weighting of the large-transverse-wavenumber components of the free-stream
spectrum function to increase with increasing boundary-layer disturbance amplitude.
We have shown that the predictions of this modified linear theory are in very good
agreement with the data of Roach & Brierley (1992) and Westin et al. (1994).

Westin et al. (1994) collected much of the available experimental data on a single
plot of (〈u′2〉/〈u2∞〉)1/2 vs. boundary-layer thickness. They showed that, with some
notable exceptions, the data tend to follow a straight line, but that the slope of the
line differs from one experiment to another. The Kendall data shown in figure 10
would have a much larger slope than the other data sets if it were included in this
plot. In fact, Kendall’s Klebanoff-mode amplitudes were nearly as large as those
found by Westin et al. (1994), even though Kendall’s free-stream streamwise velocity
fluctuation level was much smaller than Westin et al.’s. The present analysis shows
that this is because the Klebanoff modes are driven by the low-frequency transverse
velocity fluctuations and not by the streamwise velocity fluctuations, while figure
13 of Kendall (1998) shows that the low-frequency limit of the transverse velocity
fluctuations is much larger than the streamwise velocity fluctuation in his experiment,
due to a relatively severe contraction upstream of the test section. The free-stream
turbulence in the Westin et al. (1994) experiment was, on the other hand, fairly
isotropic.

Bertolotti (1997) carried out an ad hoc analysis of the problem considered in this
paper by using the parabolic stability equations. Results from linear calculations
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with a single, steady, free-stream mode were compared with the data of Westin et
al. (1994), and agreement was obtained by selecting the modal amplitude to produce
the best results. Bertolotti (1997) also made comparisons with recent, unpublished,
data of Kendall. Of particular interest is the comparison with filtered r.m.s. data for
various frequency bands. The computations qualitatively predict the large amplifi-
cation of the low-frequency components that was observed in the experiment, but
generally underpredict the actual amplitudes, with the agreement being worse at large
downstream distances and higher frequencies.

Our analysis differs from that of Bertolotti (1997) in a number of important
aspects. First, we have derived our governing equations and boundary conditions in
a rational way from the Navier–Stokes equations. Secondly, we have made use of the
major attraction of the linear theory, namely its superposition feature, to combine
the individual Fourier component solutions to obtain results corresponding to an
actual broadband turbulent flow. Moreover, our results suggest that nonlinear effects
play an important role in the development of Klebanoff modes in many of the most
important experiments. This effect increases with increasing downstream distance
from the leading edge and possibly with increasing frequency.

As already mentioned, the analysis is restricted to what appears to be the dom-
inant generation and amplification mechanism of low-frequency disturbances in the
boundary layer, namely the linear amplification of crossflow-driven disturbances in
the boundary layer on an infinitely-thin flat plate. There are numerous other effects
present in the experiments which might potentially contribute to the amplification of
the disturbances.

Our calculations of u r.m.s. include only the contribution from the three-dimensional
component ū. The two-dimensional ū(0) component makes an independent, but asymp-
totically smaller, contribution to the r.m.s. velocity fluctuation for isotropic free-
stream turbulence. However, there is an interaction term involving the ū and ū0

components in the general axisymmetric case which, while still asymptotically small
compared with the ū contribution, is larger than the terms neglected in the isotropic
case.

Kendall (1991) and Watmuff (1997) found that changing the leading-edge blunt-
ness of their plates had very little effect on the amplitude or spanwise spacing of
the disturbances in the boundary layer. However, stretching of vortex lines initially
normal to the plate by a relatively blunt leading edge produces a streamwise vor-
ticity (crossflow) which is then imposed on the boundary-layer flow (Goldstein et
al. 1992; Goldstein & Wundrow 1998). This mechanism leads to augmentation of
the disturbance amplification relative to that of an infinitely-thin plate. However,
these experiments involved a relatively large contraction which greatly reduced the
streamwise velocity and, therefore, the normal vorticity relative to the spanwise ve-
locity, especially in the low-frequency part of the spectrum that actually generates the
Klebanoff modes (as can be seen from figure 13 of Kendall 1998). It is worth noting
that the leading-edge bluntness effects were not investigated in the experiments (such
as those of Roach & Brierley 1992 and Westin et al. 1994) where the turbulence grid
was placed downstream of the contraction.

Additional theoretical and experimental work is required before a full understand-
ing of the Klebanoff mode generation and growth mechanisms is in hand. On the
theoretical side, the additional effects discussed above could each be analysed sepa-
rately, and then superposed when linear theory can be used. However, it is probably
more important to incorporate a better description of the nonlinear effects. A major
difficulty which arises from this is that the free-stream modes can no longer be
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superposed to represent the external turbulent flow. A full simulation of the problem,
including the free-stream turbulence, is impractical with current computational capa-
bilities, so that some type of modelling of the flow is required. Unfortunately, this is
not yet completely developed, but perhaps the quasi-linear theory described above is
a good start in this direction.

On the experimental side, our analysis suggests that important information could be
obtained from detailed measurements of the low-frequency portion of the free-stream
turbulence spectrum and, in particular, the relative degree of anisotropy therein. In
addition, measurements of the transverse correlation function R∞⊥ of the free-stream
turbulence would provide the input needed to compute the boundary-layer u r.m.s. in
our axisymmetric model. This would allow a more definitive test of the present linear
theory and might suggest further lines of research to develop a fuller understanding
of this phenomena.

The exact role played by the Klebanoff modes in the laminar–turbulent transition
process is still not completely clear. They can reach very large amplitudes in the
boundary layer before transition occurs, whereas Tollmien–Schlichting waves pro-
voke transition at much lower levels. Experiments by Boiko et al. (1994) show that
sufficiently high levels of free-stream turbulence can produce significant transfer of
energy between frequencies within the unstable bands for TS waves. It is therefore
possible that the Klebanoff modes primarily influence transition by modifying the
base flow, which, among other things, causes a broadening of the frequency band
over which the TS waves can grow. A stability analysis of such a base flow, i.e. the
Blasius profile with Klebanoff modes superposed, could shed additional light on this
issue. Wundrow & Goldstein (1994), Wundrow (1996), Goldstein & Wundrow (1995)
and Wundrow & Goldstein (1998) have already made some progress along these
lines.

Another possibility is that large-amplitude Klebanoff modes can generate turbulent
spots directly by producing a local separation of the flow. This has been investigated
by Wundrow & Goldstein (1998).

The authors would like to thank Dr James Kendall for supplying his unpublished
experimental data and Professor Eli Reshotko for his encouragement and helpful
comments.

Appendix A. Edge layer solution for asymptotic LUBL equations
Equation (4.21) suggests that the appropriate transverse coordinate in the edge

layer is given by

η̄ ≡ η − β = η0 + δ0 η̂, (A 1)

where η0 is determined by

2x̄A = η3
0 eη

2
0/2, (A 2)

and δ0(x̄)δΛ is the edge layer thickness. Then the mean velocity will exhibit an
order-one variation across the edge layer if we put

δ0 η0 = 1. (A 3)

Substituting these into the LUBL equations, (4.5) and (4.11), shows that

{ū, v̄, w̄} = {ūe, δ0 v̄e, w̄e} eix̄, (A 4)
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are determined by

(iūe − v̄e) e−η̂ +
∂ūe

∂η̂
+
∂2ūe

∂η̂2
= 0, (A 5)

iw̄e e−η̂ +
∂w̄e

∂η̂
+
∂2w̄e

∂η̂2
= 0, (A 6)

iūe +
∂v̄e

∂η̂
+ w̄e = 0, (A 7)

subject to the boundary conditions

ūe → 0, w̄e → 1 as η̂ →∞, (A 8)

and that w̄e eix̄ match onto (4.17) as η → −∞, with a similar condition for ūe. As
suggested by Gulyaev et al. (1989), (A 6) can easily be solved in terms of Hankel
functions to obtain

w̄e = −i−1/2πe−η̂/2H (1)
1 (2i1/2e−η̂/2), (A 9)

which clearly satisfies the outer-edge boundary condition (A 8), while the large argu-
ment expansion for H (1)

1 shows that

w̄e → (π)1/2e−iπ/8e−η̂/4e−2i1/2e−η̂/2 as η̂ → −∞, (A 10)

which, in view of (A 1)–(A 4) and (4.17)–(4.19), will match onto (4.17) if we take

c0 = (−iπA)1/2 (2x̄)1/4e−H∞+iπ/8, (A 11)

where H∞ ≡ limη̄→∞(H + 1
4
η̄2 + ln η̄).

Appendix B. Power series solution for the LUBR equations
The equations for the first two terms of the power series (5.24) are

U ′′0 + FU ′0 + (ηF ′′ − 2F ′)U0 − F ′′V0 = 0, (B 1)

P ′0 = 0, (B 2)

W ′′
0 + FW0 = 0, (B 3)

2U0 − ηU ′0 + V ′0 +W0 = 0, (B 4)

and

U ′′1 + FU ′1 + (ηF ′′ − 3F ′)U1 − F ′′V1 = 0, (B 5)

P ′1 = V ′′0 + FV ′0 − (ηF ′)′V0 + [η(ηF ′)′ − F]U0, (B 6)

W ′′
1 + FW ′

1 − F ′W1 = −κ2P0, (B 7)

3U1 − ηU ′1 + V ′1 +W1 = 0. (B 8)

Equations (B 1)–(B 8) must be solved subject to the no-slip condition at η = 0.
The boundary conditions at η → ∞ are obtained by matching with the limit of
(5.20)–(5.23) as x̄ → 0 with η = O(1). Finally, the boundary-region solution must
match onto the low-frequency, boundary-layer solution as x̄→ 0 with η = O(1).
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Putting y(0) = (2x̄)1/2 η̄ in (5.21) and (5.22) and letting x̄→ 0 with η = O(1) gives

v̄ → −η̄ − i

2
(2x̄)1/2(κ2 + i |κ|)[η̄2 + 1] +

|κ|
(2x̄)1/2

[1− |κ| (2x̄)1/2η̄]

∫ x̄

0

g(x̆)e−ix̆dx̆+ · · · ,
(B 9)

and

w̄ → 1 + (2x̄)1/2i
(
κ2 + i |κ|) η̄ + κ2

∫ x̄

0

g(x̆)e−ix̆dx̆+ · · · . (B 10)

The solution to (B 1), (B 3) and (B 4) is given by the first of (4.13) and matching
with (B 9) requires that

g(x̄)→ −3β

4 |κ|
1

(2x̄)1/2
+ g1 + · · · as x̄→ 0, (B 11)

where g1 is a constant. It therefore follows from (5.23) and (B 2) that

P0 = − 3β

4 |κ| . (B 12)

Substituting (B 11) into (B 10), and matching with the power series solution, leads
to the boundary condition

W1 → i(κ2 + i |κ|)η̄ − 3β |κ|
4

as η →∞, (B 13)

for (B 7).
It is clear from (5.20) that U1 → 0 as η → ∞. Using this along with (B 13) in (B 8)

shows that

V1 → i(κ2 + i |κ|)( 1
2
η2 − βη) +

3β |κ|
4

η + c1 as η →∞, (B 14)

where c1 is a constant determined by the numerical solution (note that no boundary
condition may be imposed on V1 as η →∞).

Matching (B 14) with the O((2x̄)1/2) terms in (B 9), and using (B 11), shows that

g1 =
2c1

|κ| +
3β2

2
+ i(κ2/ |κ|+ i)(β2 + 1). (B 15)

Appendix C. The common parts of the composite solutions (5.26) and
(5.27)

Equations (5.25)–(5.27) constitute a composite solution for the boundary-region
equations which is valid for x̄ → 0 with y(0) = O(1). They were obtained by adding
(5.24) to (5.20)–(5.23) and subtracting out the common parts. Equations (B 9)–(B 16)
show that the appropriate common parts are

v̄c = −η̄ − 3β

4
+ (2x̄)1/2

{
− i

2
(κ2 + i |κ|)[η̄2 + 1] +

3β |κ|
4

η̄ + 1
2
|κ| g1

}
, (C 1)

and

w̄c = 1 + (2x̄)1/2

[
i(κ2 + i |κ|)η̄ − 3β |κ|

4

]
. (C 2)
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Appendix D. Axisymmetric turbulence
The general form of the energy spectrum tensor in axisymmetric turbulence is

(Batchelor 1946, 1953; Chandrasekhar 1950)

Φij = Aki kj + Bδi1 δj1 + Cδij + Dki δj1 + Ekj δi1, (D 1)

where A,B, C, D and E are scalar functions of k1 and k2 = k2
1 + k2

2 + k2
3.

The number of arbitrary functions can be reduced by using incompressibility to
show that the spectral tensor can be expressed in terms of two scalar functions
(Lindborg 1995)

Φij = A
(
k2δij − ki kj)+ D

(
ki δj1 + kj δi1 − k2

k1

δi1δj1 − k1δij

)
. (D 2)

We replace the two scalars A and D with the functions

Φ1(k1, k⊥) = Φ11, (D 3)

and

Φt(k1, k⊥) = Φ22 + Φ33, (D 4)

which are related to the longitudinal and lateral one-dimensional spectra, E1(k1) and
Et(k1), by (6.7) and (6.8), respectively.

Eliminating A and D from (D 2)–(D 4) yields

Φij =

(
2k2

1

k4⊥
Φ1 − 1

k2⊥
Φt

)
(ki kj − k2δij)

− k1

k2⊥

[(
1 +

2k2
1

k2⊥

)
Φ1 − Φt

](
ki δj1 + kj δi1 − k2

k1

δi1δj1 − k1δij

)
. (D 5)
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